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Abstract: In this work, an entropy-stable and well-balanced numerical scheme for a one-dimensional
blood flow model is presented. Such a scheme was obtained from an explicit entropy-conservative
flux along with a second-order discretisation of the source term by using centred finite differences.
We prove that the scheme is entropy-stable and preserves steady-state solutions. In addition, some
numerical examples are included to test the performance of the proposed scheme.
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1. Introduction

The mathematical modelling of blood flow in arteries has a long history, which can be
traced back to the pioneering work of Euler [1]. Numerical simulations of blood flow have
gained considerable importance in recent years because they provide non-invasive options
to study and design effective medical procedures for treating some diseases. Although
three-dimensional models are more complete in describing hemodynamic properties in
greater detail, they are computationally expensive and depend on the accurate description
of the boundary conditions. In this work, one-dimensional (1D) models were considered,
which provide a realistic description of certain parts of the cardiovascular system and also
provide boundary conditions for the more-complex three-dimensional models. Moreover,
the predictive capabilities of (1D) blood flow models can be competitive with full (3D)
models in the context of some specific hemodynamics conditions [2]. On the other hand,
higher- and lower-dimensional models can be coupled in order to obtain a considerable
reduction of the computational complexity [3].

There is a considerable amount of literature dealing with numerical solutions of
one-dimensional blood flow models by using discontinuous Galerkin methods [4–8],
finite-difference-weighted essentially non-oscillatory (WENO) schemes [9], Godunov-
type schemes [10], and the arbitrary high-order derivatives (ADER) finite-volume frame-
work [11]. Most of these references address the study of the well-balanced property using
the hydrostatic reconstruction technique. More recently, a new and robust second-order
well-balanced central-upwind scheme for (1D) blood flow models was developed in [12].
In this work, not only the well-balanced property was addressed, but also it was rigorously
shown that the proposed scheme was entropy-stable.

The remainder of this paper is organised as follows. In Section 2, we recall the
hyperbolic system of balance laws that describe the flow of blood and its properties. In
Section 3, we describe the numerical methods to discretise the spatial derivative and the
source term. Section 4 will be devoted to proving that the proposed scheme is entropy-
stable and well-balanced. This section also includes numerical experiments demonstrating
the performance of the scheme. Finally, some conclusions are drawn in Section 5.
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2. Mathematical Model

The flow of blood in axisymmetric vessels with compliant walls and a flat velocity
profile can be described by the following one-dimensional (1D) reduced model (see [4]):

∂A
∂t

+
∂(AU)

∂x
= 0

∂U
∂t

+ U
∂U
∂x

+
1
ρ

∂P
∂x

=
F
ρA

,

(1)

where A(x, t) = πR2(x, t) is the cross-sectional area of the vessel at spatial position x and
time t with R(x, t) being the radius, U(x, t) is the mean blood velocity in the axial direction,
ρ is the blood density, assumed to be constant and equal to 1060 kg/m3, P = P(A) is the
internal pressure, and F (x, t) is the friction force per unit length. The present work is
restricted to the inviscid limit where F = 0.

Several expressions can be found in the literature to describe the pressure. In the
present work, we used the algebraic expression proposed in [13]:

P = Pext + β(
√

A −
√

A0), (2)

where the external pressure Pext, the coefficient β stands for the arterial stiffness and is
supposedly constant, and A0 = A0(x) is the vessel cross-sectional area at rest, which may
be variable in the case of some pathologies.

We refer to Equation (1) as the system (A, U). Such equations are an example of a
system of balance laws:

∂w
∂t

+
∂f(w)

∂x
= S(w) (3)

where

w =

[
A
U

]
, f(w) =

 AU
U2

2
+

β
√

A
ρ

, S(w) =

 0
β

ρ

∂
√

A0

∂x


correspond to the vector of unknowns, flux function, and source term, respectively. In
order to analyse the characteristic information, it is convenient to write the system in the
non-conservative form:

∂w
∂t

+ J(w)
∂w
∂x

= S(x, w),

where

J(w) =

[
U A

c2/A U

]
is the Jacobian matrix of the flux function with eigenvalues

λ1 = U − c y λ2 = U + c

and the corresponding right eigenvectors are given by

r1 = [−1, c/A]⊤ y r2 = [1, c/A]⊤. (4)

Here, c =
√

β
√

A
2ρ is the Moens–Korteweg wave speed.

It is well known that the solutions of balance laws may contain discontinuities, even
for smooth initial data. Consequently, the solutions of such systems must be considered
in the weak sense. Moreover, the weak solutions may not be unique, then it is necessary
to impose an additional admissibility criterion or entropy conditions to select among the
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possible solutions the one that is physically relevant [14]. In particular, the system (A, U)
admits the entropy inequality:

∂η̂(w)

∂t
+

∂Ĝ(w)

∂x
≤ 0, (5)

where (η̂, Ĝ) is the extended entropy pair introduced in [15]:

η̂ = η − β
√

A0

ρ
A , Ĝ = G − β

√
A0

ρ
AU, (6)

and (η, G) is the entropy pair (η, G) given by

η =
1
2

AU2 +
2βA3/2

3ρ
, G =

1
2

AU3 +
βUA3/2

ρ
(7)

Using the entropy pair, we may obtain the entropy variables:

v(w) = ∇η =

[
U2

2
+

β
√

A
ρ

, AU

]⊤
(8)

with the corresponding entropy potential:

ψ(v) := v⊤f(w(v))− G(w(v)) =
AU3

2
+

βUA3/2

ρ
. (9)

In the extended case, we have

v̂(w) = ∇η̂ = v − [β
√

A0/ρ, 0]⊤. (10)

Systems such as (3) are of special interest because of the delicate balance that must exist
between the convective term and the source term during the time evolution. Specifically, the
steady-state solutions for the system (3) are the solutions w(x), which are time-independent.
Thus, steady-state solutions satisfy the system:

∂f(w)

∂x
= S(w). (11)

In particular, the system (A, U) admits the following steady-state solution, known as
the (non-zero-pressure) man-at-eternal-rest steady-state or dead-man equilibrium [16]:

U = 0 y
√

A −
√

A0 = C = constant. (12)

When C = 0, the (zero-pressure) man-at-eternal-rest steady-state is obtained, namely

U = 0 and A = A0. (13)

It is crucial that numerical methods to approximate steady-state solutions also satisfy
a discrete version of (11). Such methods are termed well-balanced schemes.

3. Numerical Method

Since, in general, it is not possible to find an analytical solution of the system (3),
it is imperative to approximate the solution numerically. To this end, we considered a
semi-discrete finite-volume scheme for (3) on a uniform spatial mesh with nodes xj = j∆x,
j ∈ Z:

dwj(t)
dt

= − 1
∆x

(
Fj+1/2 − Fj−1/2

)
+ Sj, (14)
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where wj(t) is the cell average on Ij = [xj−1/2, xj+1/2), F j+1/2 is the numerical flux associ-
ated with xj+1/2, and Sj is a discretisation of the source term. It should be noted that the
first term on the right-hand side corresponds to the discretisation of the spatial derivative
−f(w)x. The discretisation of the time derivative will be discussed later.

The scheme (14) is entropy-stable with respect to the entropy pair (η̂, Ĝ) if it satisfies a
discrete version of the entropy inequality (5), that is

d
dt

η̂(wj(t)) +
1

∆x

(
Ĝj+1/2 − Ĝj−1/2

)
≤ 0 (15)

for some numerical entropy flux Ĝj+1/2 consistent with the entropy flux Ĝ. If the equality
holds in (15), then the scheme (14) is called entropy-conservative.

From now on, we use

[[a]]j+1/2 := aj+1 − aj, {{a}}j+1/2 :=
1
2
(aj+1 + aj)

to denote, respectively, the jump of a across the interface xj+1/2 and the arithmetic mean of
the a quantity.

In this work, we used a numerical flux of the form [17]:

Fj+1/2 = F̃j+1/2 −
1
2

Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2, (16)

where:

(i) F̃j+1/2 = [F̃1,j+1/2, F̃2,j+1/2]
⊤ is the second-order and entropy-conservative flux for

the homogeneous case of (3) given by

F̃1,j+1/2 = {{AU}}j+1/2, F̃2,j+1/2 =
1
2
{{U2}}j+1/2 +

β

ρ
{{
√

A}}j+1/2, (17)

with the corresponding numerical entropy flux

G̃j+1/2 := {{v⊤}}j+1/2F̃j+1/2 − {{ψ}}j+1/2. (18)

The numerical flux (17) was obtained in [18] from the condition (see [19]):

[[v⊤]]j+1/2F̃j+1/2 = [[ψ]]j+1/2. (19)

(ii) Rj+1/2 is the matrix of right eigenvectors of the Jacobian matrix J(wj+1/2) being
evaluated at the average state wj+1/2 := (wj + wj+1)/2; Λj+1/2 = diag(|λ1|, |λ2|) is
a Roe-type matrix; ⟨⟨z⟩⟩j+1/2 = z+j+1/2 − z−j+1/2 z−j+1/2 and z+j+1/2 denote, respectively,

the left and right limiting values of the scaled entropy variables z := R⊤
j+1/2v̂ at interface

xj+1/2, obtained by the ENO reconstruction. The choice of this ENO method was due
to the fact that it satisfies the so-called sign property [20]:

sign(⟨⟨z⟩⟩j+1/2) = sign([[z]]j+1/2), (20)

which will be useful in proving the entropy stability of the flux (16).

The discretisation of the second component of the source term B(x) := ∂x
√

A0(x) is
performed using the simple and well-known second-order centred difference approximation:

B′(x) ≈ B(x + ∆x)− B(x − ∆x)
2∆x

.



Mathematics 2024, 12, 407 5 of 12

Thus, the discretisation of the source term yields

Sj =
β

ρ

 0

Bj+1 − Bj−1

2∆x

 (21)

where Bj denotes the discrete approximation of B(xj) =
√

A0(xj).

4. Theoretical Results and Numerical Experiments

In this section, it is shown that the scheme (14) with the numerical flux (16) and the
discretisation of the source term (21) is entropy-stable and well-balanced. The proof is
similar to that developed for the Saint-Venant equations and the relativistic magnetohydro-
dynamics equations in [21,22], respectively. Then, some examples are included to check
that the numerical scheme verifies these properties at the discrete level.

Theorem 1. The numerical scheme (14) with the numerical flux (16) and the discretisation of the
source term (21) satisfies the following properties:

(i) It is entropy-stable, i.e., it satisfies the discrete entropy inequality (15), where η̂ is the entropy
function given by (6), and the corresponding numerical entropy flux is

Ĝj+1/2 = G̃j+1/2 − D̃j+1/2 (22)

with

G̃j+1/2 = G̃j+1/2 −
β(Bj Aj+1Uj+1 + Bj+1 AjUj)

2ρ
, (23)

D̃j+1/2 =
1
2
{{v̂T}}j+1/2Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2. (24)

(ii) It preserves the discrete version of the man-at-eternal-rest (12); this means that, given the
initial data:

Uj = 0,
√

Aj − Bj ≡ C ∀j, (25)

with C a constant, then the solution obtained with the scheme (14) satisfies

dwj

dt
= 0 ∀j.

Proof. Let us first prove the entropy stability. Multiplying (14) by v̂⊤
j yields

v̂⊤
j

dwj(t)
dt

= − 1
∆x

v̂⊤
j

(
Fj+1/2 − Fj−1/2

)
+ v̂⊤

j Sj (26)

= − 1
∆x

v̂⊤
j

(
F̃j+1/2 − F̃j−1/2

)
(27)

− 1
∆x

v̂⊤
j

(
−1

2
Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 +

1
2

Rj−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

)
(28)

+ v̂⊤
j Sj (29)

The left-hand side of (26) gives

v̂⊤
j

dwj

dt
= ∇η̂

dwj

dt
=

dη̂(wj)

dt
. (30)

We now turn to the right-hand side. Using (10), the numerical flux F̃j+1/2 explicitly
given by (17), Equation (18), and the definition of G̃j+1/2 (18), we obtain
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v̂⊤
j

(
F̃j+1/2 − F̃j−1/2

)
= v⊤

j

(
F̃j+1/2 − F̃j−1/2

)
− [βBj/ρ, 0]

(
F̃j+1/2 − F̃j−1/2

)
= {{v⊤}}j+1/2F̃j+1/2 −

1
2
[[v⊤]]j+1/2F̃j+1/2

− {{v⊤}}j−1/2F̃j−1/2 −
1
2
[[v⊤]]j−1/2F̃j−1/2

−
βBj

ρ
({{AU}}j+1/2 − {{AU}}j−1/2)

= {{v⊤}}j+1/2F̃j+1/2 −
1
2
[[ψ]]j+1/2 − {{v⊤}}j−1/2F̃j−1/2 −

1
2
[[ψ]]j−1/2

− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1)

= {{v⊤}}j+1/2F̃j+1/2 − {{ψ}}j+1/2 − {{v⊤}}j−1/2F̃j−1/2 + {{ψ}}j−1/2

− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1)

=
(

G̃j+1/2 − G̃j−1/2

)
− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1).

(31)

To deal with the factor (28) in parenthesis, we took into account the definition of the
scaled entropy variables and (24) to obtain

− 1
2

v̂⊤
j (Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 − Rj−1/2Λj−1/2⟨⟨z⟩⟩j−1/2)

= −1
2
{{v̂⊤}}j+1/2Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 +

1
2
{{v̂⊤}}j−1/2Rj−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

+
1
4
[[v̂⊤]]j+1/2Rj+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 +

1
4
[[v̂⊤]]j−1/2Rj−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

= −(D̃j+1/2 − D̃j−1/2) +
1
4
[[z⊤]]j+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 +

1
4
[[z⊤]]j−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

(32)

Using the discretisation of the source term given by (21), we can rewrite (29) as

v̂⊤
j Sj = (v⊤ − [β

√
A0/ρ, 0])

 0

β(Bj+1 − Bj−1)

2ρ∆x


=

U2
j

2
+

β
√

Aj

ρ
, AjUj


 0

β(Bj+1 − Bj−1)

2ρ∆x


=

β

2ρ∆x
(Bj+1 AjUj − Bj−1 AjUj).

(33)

Inserting (30)–(33) into (26) and using the definition of G̃j+1/2 given by (22), we obtain
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dη̂(wj)

dt
=

− 1
∆x

[(
G̃j+1/2 −

β
(

Bj Aj+1Uj+1 + Bj+1 AjUj
)

2ρ

)
−
(

G̃j−1/2 −
β
(

Bj−1 AjUj + Bj Aj−1Uj−1
)

2ρ

)]

+
1

∆x
(D̃j+1/2 − D̃j−1/2)−

1
4∆x

[[z⊤]]j+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 −
1

4∆x
[[z⊤]]j−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

= − 1
∆x

(
(G̃j+1/2 − D̃j+1/2)− (G̃j−1/2 − D̃j−1/2)

)
− 1

4∆x

(
[[z⊤]]j+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 + [[z⊤]]j−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

)
= − 1

∆x
(Ĝj+1/2 − Ĝj−1/2)−

1
4∆x

(
[[z⊤]]j+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 + [[z⊤]]j−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

)
Therefore,

dη̂(wj)

dt
+

1
∆x

(Ĝj+1/2 − Ĝj−1/2)

= − 1
4∆x

(
[[z⊤]]j+1/2Λj+1/2⟨⟨z⟩⟩j+1/2 + [[z⊤]]j−1/2Λj−1/2⟨⟨z⟩⟩j−1/2

)
≤ 0,

where the last inequality is obtained by using the sign property. Summing up,

dη̂(wj)

dt
+

1
∆x

(Ĝj+1/2 − Ĝj−1/2) ≤ 0,

which proves the entropy stability.
We next show the second part of the theorem. From (25) it follows easily that

F̃j+1/2 =

[
0,

β

ρ
{{
√

A}}j+1/2

]⊤
, v̂j =

[
βC
ρ

, 0
]⊤

.

The second equality implies that v̂j is constant; thus, ⟨⟨z⟩⟩j+1/2 = 0, and consequently,
the diffusion term in (16) vanishes. On account of this remark, we have Fj+1/2 = F̃j+1/2.
Hence,

dwj(t)
dt

= − β

ρ∆x

(
F̃j+1/2 − F̃j−1/2

)
+ Sj

= − β

ρ∆x

[
0

{{
√

A}}j+1/2 − {{
√

A}}j−1/2

]
+

β

2ρ∆x

[
0

Bj+1 − Bj−1

]

= − β

2ρ∆x

[
0

(
√

Aj+1 − Bj+1)− (
√

Aj−1 − Bj−1)

]

=

[
0

0

]
,

the last equality being a consequence of (25).
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4.1. Time Discretisation

To discretise the temporal derivative in (14), the explicit second-order strong stability-
preserving Runge–Kutta method (SSPRK) (Heun’s method) was used. This method is
described by the following steps:

w(1) = wn + ∆tL
(
wn),

w(2) = w(1) + ∆tL
(
w(1)),

wn+1 =
1
2
(
wn + w(2)),

where

[L(w)]j := − 1
∆x
(
Fj+1/2 − Fj−1/2

)
+ Sj,

with Fj+1/2 and Sj given by (16) and (21), respectively. In order to guarantee that the
explicit scheme obtained is stable, the time and space discretisation steps must obey the
CFL condition. For this purpose, the value of ∆t is computed adaptively for each step.
More exactly, the solution wn+1 at tn+1 = tn + ∆t is calculated from wn by using the time
step ∆t = CFL ∗ ∆x/αn

max, where αmax is an estimate of the maximal characteristic velocity
for w. All numerical experiments were carried out with a CFL number of 0.5.

4.2. Numerical Tests

In this section, some examples are presented to validate that the scheme correctly
captures the steady-state solutions of System (1) and to verify that it is entropy-stable at the
discrete level. In all examples, transmissive boundary conditions were imposed.

4.2.1. Example 1

In the first example taken from [10], we considered three different configurations for
the Riemann problem with the initial data:

w(x, 0) =

{
wl = [Al , Ul ]

⊤ if x ≤ xd

wr = [Ar, Ur]⊤ if x > xd,

with the spatial domain of length L = 0.2 m and xd = 0.1 m the point where the dis-
continuity is located. The numerical solutions were computed on a mesh with M = 200
uniform cells, and for comparison purposes, reference solutions were computed on a re-
fined mesh with 3200 uniform cells. The other parameters were A0 = 3.14 × 10−4 m2,
β = 3.31 × 106 Pa/m along with different configurations of the initial data to obtain differ-
ent types of waves. One can observe in Figure 1 the two rarefactions obtained at the final
time t = 0.009 s for the initial data wl = [2A0, −1]⊤, wr = [2A0, 1]⊤. In Figure 2, it is ob-
served that the scheme can capture the two shock waves obtained at the time t = 0.012 s for
the initial data wl = [A0, 1]⊤, wr = [2A0, −1]⊤. The third configuration is wl = [A0, 0]⊤,
wr = [2A0, 0]⊤, and the results at the time t = 0.012 s are displayed in Figure 3. In this
case, the solutions develop a left discontinuity, followed by a right rarefaction. Due to the
presence of two types of waves, we also present in Figure 4 the total entropy:

E(tn) := ∆x
M

∑
j=1

η
(
wj(tn)

)
. (34)

As expected, this quantity decreases over time, that is the scheme is entropy-stable at
the discrete level.



Mathematics 2024, 12, 407 9 of 12

0 0.05 0.1 0.15 0.2

x [m]

5.2

5.4

5.6

5.8

6

6.2

6.4

A
 [

m
2
]

10
-4

Exact

Approx

0 0.05 0.1 0.15 0.2

x [m]

-1

-0.5

0

0.5

1

U
 [

m
/s

]

Exact

Approx

Figure 1. Rarefaction waves: area and velocity at t = 0.009 s for the reference and approximate solutions.
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Figure 2. Shock waves: area and velocity at t = 0.012 s for the references and approximate solutions.
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Figure 3. Shock and rarefaction waves: area and velocity at t = 0.012 s for the references and
approximate solutions.
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Figure 4. Entropy vs. time on a mesh with 200 uniform cells.

4.2.2. Example 2

The purpose of this test problem taken from [5] was to check that the proposed
scheme preserves the zero-pressure man-at-eternal-rest steady-state (13) at a discrete level.
The configuration exhibited no flow and included a change in the section of the artery.
This is the case for a dead man with an aneurysm. The initial conditions were U(x, 0) = 0
and A(x, 0) = A0(x) = πR2

0(x), where

R0(x) =



R̃ if x ∈ [0, x1] ∪ [x4, L],

R̃ +
∆R
[
sin
(

x−x1
x2−x1

π− π
2

)
+1
]

2 if x ∈]x1, x2[,

R̃ + ∆R if x ∈ [x2, x3],

R̃ +
∆R
[
cos
(

x−x3
x4−x3

π
)
+1
]

2 if x ∈]x3, x4[,

with R̃ = 4 × 10−3 m, ∆R = 1.0 × 10−3 m, x1 = 1.0 × 10−2 m, x2 = 3.05 × 10−2 m,
x3 = 4.95 × 10−2 m, x4 = 7.0 × 10−2 m, and L = 0.14 m. The computational domain
was [0, L] and β = π−1 × 108 Pa/m. The numerical results computed on a mesh with
200 cells at time t = 5 s are plotted in Figure 5. In Figure 5 (left), it can be observed that the
area remained the same as the area at rest, as expected. In Figure 5 (right), we compare the
velocity obtained by using the well-balanced and entropy-stable (WB-ES) scheme proposed
in this work and the velocity obtained by using the Lax–Friedrichs numerical flux combined
with the discretisation of the source term given by (21). Notice that the WB-ES scheme
preserved the steady-state exactly, while Lax–Friedrichs produced unacceptable spurious
oscillations. These kind of anomalies were also reported before in [16].

4.2.3. Example 3

This example (see [5]) corresponds to the case of a dead man with stenosis. Stenosis
occurs when the artery narrows, and it leads to reduced blood flow from the heart to the
rest of the body. The cross-sectional area at rest is A0(x) = πR2

0(x), where

R0(x) =



R̃ + ∆R for x ∈ [0, x1] ∪ [x4, L],

R̃ − ∆R
2

(
sin
(

x − x1

x2 − x1
π − π

2

)
− 1
]

for x ∈ (x1, x2),

R̃ for x ∈ [x2, x3],

R̃ − ∆R
2

(
cos
(

x − x3

x4 − x3
π

)
− 1
)

for x ∈ (x3, x4)
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with R̃ = 4 × 10−3 m, ∆R = 1.0 × 10−3 m, an artery of length L = 0.14 m, x1 = 9L/40,
x2 = L/4, x3 = 3L/40, and x4 = 31L/40. The initial conditions are

A(x, 0) =
(
C + π1/2R0(x)

)2, U(x, 0) = 0,

where C = 10−3 m.
The numerical solutions were computed at t = 1 s on three different meshes: M = 100,

M = 200, and M = 400. As observed in Figure 6, the proposed scheme preserved
the steady-state (12) at the discrete level, i.e., the quantity

√
A(x, t)−

√
A0(x) remained

constant, and the velocity was null.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

x [m]

5

5.5

6

6.5

7

7.5

8

A
, 
A

0
 [

m
2
]

10
-5

A
0

A

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

x [m]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

U
 [

m
/s

]

WB-ES

Lax-Friedrichs

Figure 5. Numerical solutions of the zero-pressure man-at-eternal-rest problem on a mesh with
200 cells at time t = 5 s. Area and area at rest (left) and comparison between solutions obtained with
WB-ES and Lax–Friedrichs schemes (right).
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Figure 6. Area minus area at rest (left) and velocity (right) for the non-zero-pressure man-at-eternal-
rest problem at t = 1 s on three different meshes: M = 100, M = 200, and M = 400.

5. Conclusions

We presented a numerical scheme to approximate the solutions of a blood flow model
in arteries. It was shown analytically that the scheme is entropy-stable and preserves the
steady-state solutions. These properties were also tested numerically with some standard
examples. Although higher-order schemes can be found in the literature related to the
numerical approximation of blood flows, the value of the second-order discretisation of
the source term proposed in this work lies in the fact that, using linear combinations of
them combined with high-order entropy-stable fluxes, it is possible to construct arbitrarily
high-order entropy-stable schemes that preserve the steady-state solutions.
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